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Strength Modeling in NIF ALE-AMR
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Stress and strain fundamental equations

position
velocity
density
internal energy
temperature
pressure
strain
stress
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Constitutive stress strain relationship
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Debris and shrapnel studies require modeling
of a wide variety of strength properties

Ductile Materials 
and Plasticity Brittle Materials

Anisotropy and Dependence
on Material State
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Flexible strength modeling framework
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Example:  Johnson-Cook 
strength/fracture model plug-in
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3D cooling ring simulation with strength
(no fragmentation)
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Fragmentation Modeling in NIF ALE-AMR
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• Beyond fracture most material models give up
• At fracture we restore the cell to the previous state
• Simple fracture model is then applied

We are interested in results beyond fracture 
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Upon failure a small volume fraction 
of void is introduced into the cell

If the cell continues to grow the void 
enlarges to meet that growth

Volume fraction interface reconstruction 
allows voids to coalesce to form cracks

Cracks can grow large enough to span 
across cells allowing fragment formation

New NIF ALE-AMR model for failure, fracture, and 
fragmentation
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2D ring fragmentation simulations

• 2mm - 4mm ring made of Al6061 surrounded by void
• Johnson-Cook strength and damage models were utilized
• Impulsively loaded with initial velocity 2000m/s on inner layer of nodes

t = 0.0 us t = 0.7 us

t = 4.0 us t = 11.3 us
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Fragmentation Validation Efforts
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Ring simulation
comparisons with LS-DYNA

•ALE-AMR
•Eulerian
•impulsive loading
•w/ tensile failure
•mix fracture

•ALE-AMR
•Lagrangian
•pressure loading
•no tensile failure
•cell fracture

•LS-DYNA
•Lagrangian
•pressure loading
•no tensile failure
•cell fracture

•ALE-AMR
•Eulerian
•pressure loading
•w/ tensile failure
•mix fracture

Due to impulsive loading Tensile failures

• 2mm - 4mm ring made of Al6061 surrounded by void
• Johnson-Cook strength and damage models were utilized
• Variety of loading, tensile strength options, and advection modes
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Electromagnetic ring expansion experiment

125uf
Al ring

Solenoid
●~15mm radius 1x1mm cross-section rings
●0.94-3.12kJ is discharged in the solenoid
●Magnetic field induces current in the ring
●Current heats the ring and forces it outward
●Heating and expansion depend on total energy
●Fragments are collected and counted

M. Altynova, X. Hu, and G. Daehn: Increased Ductility in High Velocity Electromagnetic Ring Expansion,
Metall. Material Trans. A, 27A, p1837-1844, (1996)

For our simulations:
●Ring was modeled with 5x5 elements in the cross-section and 600 elements around
●Initial temperature of the ring was set to account for resistive heating
●A Gaussian pulse (11.75us FWHM) of body force was used to provide acceleration
●~6000 time steps were taken to reach a final time of 45us
●Fragments were counted at the final time

P. Wang, An ALE Formulation with AMR for material modeling, Conference: Numerical methods for multi-material 
fluid flows, 5th-8th September 2005, St. Catherine’s College, Oxford (invited talk)



16

Electromagnetic ring expansion simulations
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Electromagnetic ring expansion 
validation results

NIF ALE-AMR simulations are a good match to experimental data
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Fragmentation refinement study

Continuum solid mechanics simulations have known issues with refinement studies
As the mesh is refined strain is localized into smaller places causing fracture earlier

Rich Becker’s “seeding” approach was used to 
provide some mesh independent structure

Random 5% 
cell to cell 
variation of 
damage 
variable

5% peak to 
peak sine 
variation of 
damage 
variable
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Seeding with mesh independent structure
enables convergence in fragment count
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Simulations of recent laser spallation
experiments are in progress

Laser

Ta plate

Aerogel

Thinplate Experiment

Aerogel sample

Initial Simulations

Laser experiments by:
Maddox, Kalantar, Eder, Koniges, Remington, Meyers*, Tobin, Andrew*
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Fragmentation Results
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Re-emit shrapnel study
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2D Re-emit simulation @ 30J/cm2

Pinhole30j.mp4

• 2D Vanadium pinhole configuration
• Vanadium modeled by Preston-Tonks-Wallace model from MS
• EOS provided by LEOS tables
• Energy fluxed into the rightmost cells of 5ns (no radiation diffusion)
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2D Re-emit simulation @ 400J/cm2
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Multi-Scale Strength Modeling
(in progress)
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Voronoi Diagram

We introduce polycrystal structure with the 
Voronoi Tessellation Method

A Voronoi diagram 
decomposes a metric 
space based on distances 
from a specified discrete 
set of points.

Polycrystals are set up at 
the finest scale of 
refinement. 

Large domains can be 
tiled with a relatively small 
number of Voronoi cells

A 2-D Voronoi
structure 

with 20 crystals

A 3-D Voronoi
structure with 50 

crystals
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Multi-Material HMM framework for ALE-AMR

Material Models
attached to cells Level 0

Refine Translate
History

Level 1
w/new modelLevel 1

MM_1

Parameters P:p0, p1...

History variables H:h0, h1..

σ = f(ε,e,P,H)

HMM_A

Bridge

L0 L1
B0-1MM_2

Parameters P:p0,p1...

History variables H:h0, h1... 

σ = f(ε,e,P,H)

MM_3

Parameters P:p0, p1...

History variables H:h0, h1...

σ = f(ε,e,P,H)
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Conclusions and future work

• A flexible framework for material strength has been implemented
• Through the framework many LLNL models have been hooked in
• A new fragmentation model has been implemented
• Initial validation results are promising
• The code has been used in a variety of fragmentation simulations
• Future work includes crystal grain modeling and HMM


